

Lab on Geographic Information Science for stainable development and smart cities

INSTITUT NATIONAL DE L'INFORMATION GÉOGRAPHIQUE ET FORESTIÈRE

Camera pose estimation

Our problem:

- . Camera pose initialisation:
 - Relative $\{r_{ij}, \mathbf{c_{ij}}\}$ \rightarrow in parallel & fast
 - Global R_i , then C_i \rightarrow fast but not precise

2. Refinement: bundle adjustment (BA) \rightarrow rigorous & precise but slow

Key ideas:

- Local BAs over relative motions provide hessians
- Hessians encode **features' random errors** & **correlations** between camera poses and 3D points
- X Existing methods **discard** those information rich matrices

Pointless BA:

- **t** Leverage hessians in global BA while excluding features \star **Propagate** the locally defined hessians to the global frame &
- adjust \rightarrow rigorous & precise & fast & low cost

Datasets

imes 1 photogrammetric d., imes 2 computer vision benchmark, imes 1 long focal d.

Pointless Global Bundle Adjustment with Relative Motions Hessians

Ewelina Rupnik, Marc Pierrot Deseilligny

Method Initial global motions 1. Compute local motions & retrieve local Hessians w.r.t. camera parameters c_1 c_2 $\{\lambda, \alpha, \beta\}_s$ otio 2. Extract the camera reduced matrix h from H using Schur complement $\{R, \mathbf{C}\}^0$ 3. Find initial global poses 4. Refine global poses $\{\lambda, \alpha, \beta\}_s$ $\{r_k, \mathbf{C}_k, h\}_s$ **Pointless BA** E^{s}_{BA} • • • Global bundle Local bundle adjustments adjustment Local Hessians **Global Bundle Adjustment** Rigorous: encode stochastics of relative motions Fast: disengages feature points from the adjustment 20 C A

- Compact: information stored in $6N \times 6N$ matrices
- Low cost: by-product of local BA (parallel comp.)

LaSTIG, UGE, IGN-ENSG erupnik.github.io/pointlessGBA.html

$$E_{BA} = \sum \sum \rho \cdot \mathbf{r}^2 = \rho \left(\delta x^T \, \overbrace{(J^T J)}^{\mathsf{H}} \delta x + r_0^T J \delta x + r_0^2 \right)$$

$$x_s = \{c, rot\} = \{\lambda_s \alpha_s C + \beta_s, \alpha_s R\}$$

veraging
$$\mathsf{E}_{BA}^{g} = \sum_{s}^{S} \sum_{i}^{3} \rho || \{c_{si}, rot_{si}\} - \{\lambda_{s} \alpha_{s} C + \beta_{s}, \alpha_{s} R\} ||^{2}$$

$$= \delta x^T h \delta x + \cdots \Rightarrow E^g_{BA} = \sum_{s=0}^S E^s_{BA}$$
$$\{\lambda \alpha C + \beta, \alpha R\} - \{c_0, rot_0\}$$

- Precise: propagates the quality of local BA to the global frame
- Flexible: can be easily integrated within any SfM pipeline

Experiments & Results

Initial 3D structure

Averaging

5-Points BA

Pointless BA

